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LOADS IMPOSED ON INTERMEDIATE FRAMES OF STIFFENED SHELLS
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SUMMHARY

The loads imposed on intermediate frames by the cur-
vature of the longitudinals and by the diagonal-tension
effects are treated, A new empirical method is proposed
for analyzing diagonal~tension effects, The basic formu-
lag of the pure diagonal-tension theory are used, and the
part of the total shear § carried by diagonal tension
is assumed to be given by the expression

T .0
_ 0
Spp = 5 (1 - =2)

where T, 1is the critical shear stress, T the total

(nominal) shear stress, and =n = 3 - g/T vwhere o is
the stress in the intermediate frame, Xumerical examples
illustrate all cases treated.

INTRODUCTION

The structural slements of stiffened shells may bde
divided into two main classes: strength elements and
form elements, The strength elements primarily develop
the stresses necegsary to hold the external loads in
equilibrium; the form eloments primarily serve %o give
the degired shape to the structure and to maintaln this
shape as long as possible when the loads increase, The
longitudinal stiffeners and the skin of & fuselage, for
example, are strength elements and the intermediate frames
are form elements.

No sharp line of demarcation, of course, exists be-
tween the two kinds of elements., If the strength members
have any tendency to change thelr shape under load, then
the form members will develop stresses resisting further
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deformation of the strength members. Conseguently, the
form members might also be called secondary strength mem-
bers. The loads imposed by the strength members on the
form members are the subject of the present paper., 4n
appondix gives numerical examples for the application of
the principles developed in the paper.

GENERAL ASSUMPTIONS

The stiffened shell, on the stressed-skin structure,
employs two digtinct types of strength element: the rel-
atively compact longitudinal stiffenser and.the relatively
thin sheet, The same two components are characterigtic
of the plate girder, which has been extensively employed
for a long time in civil engineering. The plate girder
may be consgldered as a two-dimengional form and the sgtif-
fened shell, as a three-dimensional form of stressed-skin
structure,

Civil engineers have establisned the custon of assum-
ing that the flanges of plate girders take most or all of
the normal gtresses due to bending and that the web takes
all the shear, Measurements have shown that the actual
stresses are sometimes distributed in a guite irregular
manner and that, therefore, the maximum stresses do not
agres very well with the calculated stresses, The assump-
tions mentioned have nevertheless been accepted as a sat-
igfactory basis for design in civil engineering and they
have been adopted for aeronautical design. Refinements
have been mads, however, in establishing formulas for the
effective width of sheet that may be considered to work
in conjunction with the stiffener in carrying normal
stresses, .

If the nofmal stresses due to bending are known, the
snearing stresses in the sgheet can be calculated, It is
customary to assume that the ordlnary engineering theory
of bending applies, which gives for the normal stress and
the shear. stress, respectively,

ny
o= : (1)
T:i—Q-' '

bI (2)
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This theory neglects shear deformation and isg sufficiently
accurate . for englneerlng work wHen applled to bedans of
solid cross section. Then the theory is applied to stif-
fened shells of round or elliptical-cross s&ction, such as
fuselages, the errors in normal stresses may amount to 5

or 10 percent., Wnen the theory.ls applied to wide shallow
box beaams, such as wings, the’ errors. may be as much asg 30
percent, The design of the intermediate frames rests, how-
ever, on the average rather than the peak values of the
Pnbrmal stresses, For most_practical purposes, the use of

- the.engineering theory of bending is believed to be suffi-
ciently accurate for the prlmary analysis of the ghell that
must be made to obtain the desizn loads in the 1ntermediate
frames, In order to obtain reliable design 1oads .on the
shell itself, however, it will often be necessary to refine
the calculation by taking into account the shear deforma-
tion of. bhe skin

The shear ‘stresseg dues to torsion may be calculated
by the formula .

T '= ———— i .- (3)

This formula applies strictly only to a shell of constant
cross section loaded by shear stresses at the ends. It
is probably sufficiently accurate for design purposes at

21l cross sections where intermediate frames are located.

It is impossible to overemphasize that all theories
of stress analysis are of limited applicabdbility. It can-
not be urged too often that the stress analyst study the
basgsic assumptions underlying the theories in order to be-
come acguainted with their limitations,

PLATE-GIRDER THEORY

For convenience of reference, the term "plate girder!
will be used to denote & girder with a plate web designed
¢o that the web will net buckle under shear loads until the
design load is reached.: As already pointed out, such a
girder may be considered as a speclal case of stressed—skin
structure, the intermediate frames of’ the ghell ‘being rep- .
regented by uprights.or web stiffeners’ in_ the” plate girder,
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The girder recommends itself by its simplicity as a basis
for discussing the 'necessary principles; the application”
of these principles to shell structures will then follow
as a natural extension, . . ¥

The Plate Girder with Parallel Flanges

In & plate: girder with parallel flanges (fiez, 1),
internediate "frames" driuprights are required. Uprights
day be used, if-desired, to increage the:critical buckling
stress of the web-but they will not be subjected to loads
urtil the wed buckles, .By the definition-of the term
"plate girder! used in the present paper, .this dbuckling
Aoes not occur until the design load is reached or passed.

The Plate Girder with Curved (or Inclined) Flanges

The plate girder with curved flanges (fig, 2) is the
general case of the girder with inclined flanges, In all
the following discussions, the girders will be asgsumed to
Pe symmetrical about the longitudinal axis, at least as
far as inclination of the flanges 1s concerned,

In a girder with inclined flanges, the flange forces

carry part of the shear load., The vertical component TV of
each flange force is given by the formula

y :
V==—=% ) : 4
» an ( ?
The horizontal componént H is given by
M

s (5)

e
i

The shear force Sy In the wed is given by
: S n,
Sy = P - 2V = P - | (6)
. [ o .

Uprights are not indispensable in practice becauss the
plate wab is capable of taking some transverse normal
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stresses, although these gtresses are neglected in the de-
gign, If uprights are used, they may be analyzed by as-
suming the curved flanges to be rTeplaced by straight
flanges kinked at each upright, as willibe shown presently.

The Plate Girder with. Xinked Flaﬁges-

In 2 girder with kinked flanges, it is necessary to
use uprights at sach. kink if the web 1ls to carry only shear
(fig. 3(a)). The horizontal components .H; “and Hy of
tne. flange forces Jjust to the left and to the right of the
kink will be equal, The vertical components ¥, and V;,
however, will differ by an amount AVy. Application of
formula (4) gives

AVy =V, = 7= (tan 8; - tan Bi)A?‘ (7)

M
2 1 h
[o]

The force AVL must be absorbed by an u@right_to be con-

verted into change of shear force in the web (fig. 3(b)).
One force AVy acts on the top and one on the bottom of

the upright. The total force exerted on the upright must
be held in equilibrium by the difference betwveen the webd
shears Sy; and Syo: ’

24Vy, = Sgy1 - Sy (8)
By formula (8)
_ . )
Sg; = P L and ., = P —o2
w1 72 "
ho fie]
Therefore
. B oh)
207y, = Sy - Syp = P EE2 (9)
L -
¢}

It can easily be shown that the valuesg of AVL obtained

from equation (7) and from equafion (9) are numerically
equal, B : ’
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Application of Plate-Girder Theory to Shells

Figure 4 shows the cross sectlion of a fuselage, as
well ag the side view and the plan view of a sghort section
of the fuselage at either side of an intermediate frame,
The curved outlines of the actual fuselage have been re-
placed by straight lines between frames,

As indicated in the figure, the stringer dirsction
lines .at any one cross section are assumed to meet in a
common apezx on the azis of the fuselage, The angle of in-
clination between a stringer and the fuselage axig 1s de-~
noted by--&v when seen in the projection on the vertical

plane and by SH when gseen in the projection on the hori-
zontal plane,

Any two corresponding stringers, for instance, the
upper longeron U and the lower longeron L of figure 4,
- together with the intervening skin may be considered as a
two~flange gilrder; the entire ghell may be congidered ag a
superposition of several guch individual girders. Ths
shear carried in the web of each individual girder is given
by formula (6), if P is understood temporarily to refer
to the share of .the total load carried by each individual
girder, Now, the factor hp/h, 1is the same forall siringers
at any one sectioh. The shear carried by the skin (or web)
at any cross section of the fuselage isg therefore

2p

Sy = P
w h

(10)
o

where P 1s again the total load, and the factor hP/hO

may be dstermined from any one stringer, provided only
that the proper plans of projection is uged, namely, the
plane parallel to the load,

The horizontal load in any stringer 1s agssumed to be
given by formula (1). The shear load per inch perimeter
of the shell gkin 1s therefore obtained by applying for-
mulas (2) and (1C) as .

Tt AN (11)
21 hy,

(It should be noted that, in the application of formula
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(2), the width b 1is taken as twice the actual skin thick-
ness measured normal to the skin, The use of the "slant
thickness" is incorrect because the shear must be tangen-
tial to .the median line.) At the frame (fig. 4), the dif-
ference between the shear forces Just to- the left and just
to the right of the frame

PQ Bp1 - Bpa

bt = (T8), - (re), = = -
Q

(12)

agts as a distributed shear 1oad an the frame (fig. 5(a)).
Thisg distributed load is heéld in equilibrium Dby -the dif-
‘ferences bstween the vertical components ‘0of the stringer
forces :

AVy = == A (tan 8., - tan 8..) : (13)
L =7 V2 vl |

vhere A 1is the cross-sectional area of the stringer under
consideration; y, its digtance from the neutral axis;

and I, the moment of inertia of the shell cross section,
These forces AV, are also shown in figure 5(a)

In the horizontal projcction, the stringers are also
kinked and therefore exert transverse forces on the frame

M .
Ay = ?? A (tan Sy - tan &yy) (14)

The resulting system of horizontal loads acting on the
frame is shown in figure 5(b)., The analysis of the frame
for these 1qad systems may be made by any desired_method,

The skin was assumed %o be directly connected to the
bulkhead frame,. If the frame is connected only to the
gstringers and not to the skin, the formulasg will gtill
give the average forces correctly, but there will be force
concentrations resulting in higher maximum stresses. This
fact would influence, for instance, the design of the skin;
the degign of the frame, however, will not bse materially
influenced because it depends on the integrated effects of
the applied forces.
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. THE EFFRECTS OF BEIAM, CURVATURE .

Beams may be curved for two reasons: - They may be.-
built with initial curvature or they may - be bent into a
curved shape by the applied loads, - It will be assumed
that the curvature is small,

Curvature may - be thought. of as a succession of many
small kinke, and it hasg been previously shown that there
is a vertical component of the flange force at each kink,
as given by formula (7)., * If the curvature of ths two -
flanges is of opposlite sign, as in the cases previously
treated, the vertical components of the two flange forces
act In the same directlion and must be balanced by shear
forcoes, If the curvature of the two flanges is of the
sane sign (fig. 6), however, the vertical components will
oppose each other and will give rise to transverse loads.
These distridbutzd transverse loads will cause compression
'in the shesr webs and bending in the siringers between
frames, ' The frawes act as supports to the stringers and
faurnigh the -.concentrated reactions to the transverse loads
on the stringers, The frames are therefors in compression,
ag indicated in figure 6(b),.

If the radius of curvature R of the beam 1s assumed
to be large compared with the depth of the beam, the dis-
tributed transverse force per unit run of span acting on
any stringer is

v F
Ax R : ' ' 2 '
where F is the axial force on the stringer. If Ax 1is
made equal to the frame spacing d the resulting expres-
sion n ' T
v o= “F.g'. ; C . ..’.(15)
' R --- . L N " . .,

"givea the concentrated force exerted by any given stringer
on the frame.,;_'

According to the theory of bending, the bending dur-
vature ig given by

1 M
= - (17)
R I
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The stringer force F 1is given by
F=Za o T | (18)
I

where A 41is the cross-sectional area of the stringer.
Substituting from equations (17) and (18) into equation
(16) and using the fundamental relation (1) gives

AN\? Aecd 2 A4
v =(2Y 222 = = 19
i/, ® Y T3¢ (19)

This load is normally very small; but it may become of
gome importance in very shallow flexible beams, being in-
versely proportional to the beam depth, It should be
noted that the effect is proportional to the square of
the applied bending moment, a fact which may be ilmportant,
for instance, in connectlon with strain-gage tesgsts at low
loads.

The loads V may become gulte important when the in-
terimediate frame is open; this .case occurs, for exampls,
at a cockpit cut-out when the fuselage isg subgected to the
fin-and- rudder load .

It might be noted in passing that, whensver the forces
V become important for bulkhead design, the distridbuted
trangverse loads from which they arise become important on
account of the local bending whlich they cause in the T
stringers. .

DIAGONAL-TENSION THEORY

The Plane Beam in Pure Diagonal Tension

The diagonal-tension beauw is so well-known to aero-
nautical designers that no long discussion will be given,
It will be sufficient to recall that the wed of the bsam
(fig., 7) develops a series of parallel folds inclined at
an angle o to the axis of the beam, The stress in tae
web sheet 1s assumed to be pure tension along the lines
of the folds. Uprights are nscessary, .28 in a truss with
tension diagonals, to keep thé flanges separated agalinst
the tendency of the diagonals to pull the flanges together,
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The angle of folds o 1s determined by the formula

sin2 g =,/2% ¥ a - a (20)
with
. ht
L+ 5Ty
a = — (21)
dt bt
Ay RAp,

where Ay 1is the cross-sectional area of the flange and
Ay is that of the upright, For the practical range of.

construction, the calculated value of ¢ 1is around 42°,

On the assumption of rigid flanges and uprights, the the-
ory gives - g = 45°, which 1s a convenient value for prac-
tical use and 1s slightly conservative for the design of
the uprights with which thils paper is concerned, For up-
rights inclined to the flanges at an angle B, the assump-
tion of rigid edge members gives o = R/2, which is prob-
ably always used in design work,

The load on the upright isg giveﬁ by the formula

Vg = P % tan o = Ttd tan . (22)

for the cage of figure 7, The derivation of the equations
given may be found in reference 1., The application of
these formulas to shellg with plane walls is well enough
known %o obviate a detailed discussion,

The Shell with Curved Walls in FPure Diagonal Tension

In curved diagonal-tension flelds, such ag side walls
of fusslages, the calculation of the angle of folds ¢
betomes more complex, The formulas are given in reference
2 but, unfortunately, it is impossible to give a single
formula comparable with equation (20) that is applicable
"to a curved field, The assumption of rigid flanges and
uprights mads for plane fieldsg may alsgso be made for curved
fields, the longitudinals and the rings being assunmed rigid
in order to obtain a practical approximation to the angle q.



N.A.C.A, Technical:Nbte.No, 687 11

The calculation of -the leads impeased by the skin on
-.the ring of & curved diagonal-tsnsion fiseld is also more
complex than the calculation of the load imposged on the
upright of a. plane beam, -For simplicity, the case of uni-
form diagonal tension around the circumference will be
firgt considered, Thisg case occursg in a shell in torsion,

.First of all, ‘the circumferential component of the.
tension in the skin must be counterbalanced by hoop com-
pression in the ring, - This relation is exactly analogous
to the relation between skin tension and upright force in
the plane beam, and formula (22) again applies.

The circumferential tension is transmitted to the
ring by radial presgure, If the ring touchesg the gkin,
this transfer ig continuous and there are no additional
effects, If the ring does not touch the sgkin and receivss
its load through the longitudinalg, then the radial pres-
sure inward 1s concentrated at the longitudinals (fig.
8(a)). By application of formula (15), it will be found
that thisg curved beam ig statically eguivalent to the
straight beam shown in figure 8(b), Under the assumed con-
ditions of uniformity, the part of the ring between longi-
tudinals 1s therefore in the condition of a beam built in
at both ends and loaded by a uniformly distridbuted load,
If Pr 1s the radial load exerted by one longitddinal on
the ring, the maximum bending moment M on the ring will
be : '

M =
' 12

occurring where. the ring is loaded by the longitudinal,
Now the load P, s given by elementary statics as

h h
Pr=VU§=A‘rtd ta.nu,-R-

Therefore .

-

W= Ttd tan o (23)

12 R

where h and R are measured on the circle of contact
between longitudinals and ring,
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These equations hold gtrictly only when there is an
infinite number of longitudinals, They are, however, suf-
ficiently accurate for practical purposes if the number of
longitudinals n distributed around the circle is greater
than 6,

Formula (22) applies to any shape of cross section,
as long as the asgumption of uniform tension along the cir-
cumference is fulfilled, Formala (23), of course, applies
strictly only if the radiuvus R 1ig constant between longi-
tudinals, ’ v

If the ring is open, the casge ig analogous to that of
a plane dlagonal-tension beam with stiffeners on only one
gside of the web, The pull of the sheet causes an eccen-
tricity moment acting throughout the length of the ring,
or upright, ' i

M=Vge=17Ttd tan o © (24)

where e 1s the distance between the centroid of the ring,
or upright, and the line of action of the gheet tension.

In a plane web, e Wwill be constant along the length of
the upright, In a curved web, however, the foldsg in the
sheet will leave the original plane of the sheet and will
finally lie along the chords from longitudinal to longitu-
dinal, and e will be variable,

Eccentricity moments will also arise if the gheet
tengsion and with it the force VU varies along the cir-

cumference of the ring, or alorng the length of the upright.
Consider, for ingtance, a shell as indicated scpematically
in figure 9; assume that the skin hag buckled into diag-
onal~tengion fields in the panels next to the neutral axis
but not in the panels next to the extreme fibers. TUnder
thisg condition, eccentricity moments ag shown in the figurs
will act on the ring (assuming the load to act downward),
each moment being again expressed by formula (24), In the
general cage, however, when there is diagonal tension in
each panel, the moment 1s catsed only by the difference be-~
tween succesgsgive forcses VU, or

d = e(V -V ) (25)
U, Un_.1 L

starting the count at the extrems fiber, If symmetry ex-
ists about both axes, the moment at A 1is
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W7

et LT
M = M — - T ' (25a)
=M= .
and the moment at B ie
My = M <1 - 26) (26D1)

The total moments at A and B are obtained by summing
up the individual contributions from each panel polint, or
for each longitudinal,

The theory of the preceding paragraph is based on the
assumption that the circumferential component of the diag-
onal tension in a given panel does not affect the circum-
ferential tension in the panels adjacent to it on the cir-
cumference. Actually, these circumferential tensions in
the skin can directly equalize themsgelves to some extent
around the circumference, At the 1limit, when theyequalize
themselves completely, the hoop compression Vg in the

frame will be uniform around the circumference and the ec~
centricity moments given by equation (25) will disappsear,

The Incomplete Diagonal-Tension Field

Practical experience has prove& that the design for-
mulas based on the asgumptlon of pure diagonal tension
are too conservative in many cases, It was found that the
erittcal buckling stress of the sheet has to be exceeded
many times before the state of stress in the shest ap-
proaches reagonably closely to the assumed condition of
pure tepsion. In relatively heavy sheets, and particularly
in curved sheets, the critical buckling stress is:-often
exceeded only a few times at the design load, so that the
assumptlons of the theory are not very well fulfllled

The main reagon for ‘the d1screpancy ig obviously the
fact that the sheet continues to carry part of the load
in shear after 1% has buckled., 3Borrowing an assumption
sometimes made in structures with compresqlon members,
#agner and Ballerstedt (reference 2) and others therefore
proposed to assume that the sheet carries the critical
gshear stress as shear even after buckling and that only
the excesgs over the Crltical stress is converted into di-
agonal tension, '
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A more detailed study led Schapitz (references 3 and
4) to propose a theory of the "incomplete dlagonal-tengion
field." He considers a skin-stringer panel loaded by nor-
mal forces along one axis and by shear forces, In sections
parallel to the normal forces, the stress conditions are
agsumoed to be uniform, In transverse sectionsg, however,
. tho normal stress is agsumed to vary continuously from ten-
sion along the center line through zero to compression in
the longitudinal stiffeners, The second principal stress
is assumed to be a compression equal to tho critical shear
‘stress, : _

The law of stress variation is assumed only gqualita-
tively. A characteristic value determining the quantita-
tive variation is then chosen so that the results of the
analysis give the best pogsible agrecment with tests, A
gsecond characterigtic value enters into the picture for
curved dlagonal-tension fields, so that there is ample pos-
sibility of adjusting the theory to fit the facts,

Proposed New Theory of Incomplete Diagonal-Tension Fisld

The present paper is concerned with only one single
item of the diagonal-tension theory, namely, the loads im-
posed on the uprights or the transverse stiffeners. A de-
tailed discussion of diagonal-tension theories would there-
fore be out of place., Although the theory of Schapitz has
much to recommend it on the basis of wide applicability,
it 1s thought that a somewhat simpler theory built up on
different assumptions will be suitable for the present re-

stricted purpose and perhaps for a wider field of applica-
tion, ’ . -

Tho assumptions underlying the proposed theory are the
fellowing: .

1, The angle of folds is given by the curve in figure
10, obtained as follows: 1In reference 2 are

given cur#es of .o against '% /% calculated

first for closély spaced longitudinals, then for
closely spaced rings. The longitudinals and the
rings beling agsumed rigid (a =. 0 in referocnce
2), twq curves are obtaingd for «. These two

¢urves intersect, and the single curve of figure
10 was obtained by using the branches of the two
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- ‘eurves that give the higher values of g and
fairing aver the break near the intersection,
Experimental evidence to be discussed later
furnished the basis and justification for this
procedure.

2. The shear force s is oarried partly as shear
SS and partly as diagonal tension Sprp

The part carried as ﬁiagonal tension is given
by the expression. .

T n
o} .

where T is the actual nominal shear stress
(i.e., total shear force divided by sheet area)
and T, 1s the critical buckling stress, so
that 7/7, is the factor by which the buckling
stress is exceeded. The exponent n is deter-
mined from tests, With =»n = 1, the Wagner-
Ballerstedt assumption 1s obtalined, On the ’
basis of the Wagner-Lahde tests (reference 5),
it appears safe to set

N =3 o e - (29)

where GOy 1is the compressive stress 1in the up-

right., It will be permissible, as far as pres-
ent knowledge indicates, to use n =3 if :
o

c . . . .
L < l ana o= 2 1f 2> i.l'Equation (29)
T 2 T 2 '

is based on the assumption that the stress in
the longitudinals caused by diagonal tension .
is small, This agsumption is valid for most
practical cases; in the tests reported in ref-
‘erence 5, this consideration was taken into ac-
count by making the 1ong1tu&1nals extremely
‘heavy. : . .
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The physical meaning of equation (28) is that the
shear stress continues to increase after buckling
if n> 1, This agsumption is the main difference
between the proposed new theory and the older the-
orieg, which assumed =n = 1, that is, the sghear
gstress to remain equal to the buckling stress.

The theory expressed by formulas (28) and (29) at
present rests chiefly on tests made of plane di-
agonal-tengion fields, It is possible that, for
curved fields, a more complicated relation should
be used, The experimental evidence for curved
fields, admittedly very scanty, does not appear
to indicate the immediate necessity of introduc-
ing further complications,

Application of Proposed New Theory to Shells

On the basgis of the proposed theory of the incomplete
diagonal-tension field, the procedure of stress analyming
a shell would be as follows:

For each panel, the total nominal shear stress 1s cal-
culated by means of formulas (2) and (3),

The angle of folds o 1g determined from figure 10,

The critical shear stress is calculated, ¥From avail-
able data on structures simulating aircraft construction
(references 3 and 6), it appears that the formula

T, =O.1E§-+5E<§>a [1+o.s (g—)j (30)

may be expected to give good average values for the crit-
ical shear stress. If the values given by formula (30)

are multiplied by 0.75, reasonable assuranceé may be had
that the resulting value is conservative, In formula (30),
the notation of figure 10 is used, and it is assumed that
d >(h.) If h >4, these two letters must be interchanged
in (30), ' ' o

The portion of the total shear stress T that

-
: DT .
ig carried as diagonal tension is calculated with the help
of formula (28), In the first analysis, the exponent n

1%
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must be .agssumed., In the final analysis, 1n 1is calculated
by using formula (29), rU“'being replaced by the value ob-

tained from the first analysis.,

With the angle ' ¢ énd the strese DT known, the

forces and the moments on the ring-can be calculated by us=~
ing the previously dlscussed theory of the ‘pure diagonal—
tension field

Bxperimental Checks

Angle of folds.- The tests by Limpert (reference 7)
give an excellent check for the curve of figure 10, 1In
these tests, the angle ¢ was meagired at various stages
of loading, and the experiments clearly showed the increase
of o with increasing shear stress predicted by the theory.

In the torsion tests made by Schapitz on complete
shells (reference 3), the strain measurements were made at
two load stages, the lowest ones being well beyond the buck-
ling load, The calculated angles ¢q for these two load
stages closely bracket the observed angle,

In the tests made by Thorn (reference 6), the average
observed angle is 26,8° and the observed maximum is 34
The average angle calculated from figure 10 is 26.2°, if
the load acting on the specimens is 2ssumed to be the trit-
ical load, The average calculated angle ig about 389, if
the load is assumed to be the load used in the last stage
of the strain-gage test., The test report does not state
at what loads the angles were measured, so .that no direct
comparison can be made., It 1s improbable that the actual
changes in angles were as large as predicted by theory;
congequently, the calculated angles are probadbly too large
for these tests and the resulting calculated frame stresses
are high, that ig, conservative,

Stresses in framesg.- Strain measurements on frames are

described in refsrences 3 and 6, For the tests described
in reference 6, the proposed method of analysis gave con-
servative results, the observed stresses being as low as
50 percent of the calculated stresses, PFor the tests re-
ported in referencs 3, the method was not congervative,
The cylinders used in these tests had besen used previously
for bending tests, leaving permanent deformations, For
this reason, and possibly others, the observed critical
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stress wasg low,.in:one.case as low ag 57 percent of that
.calculated by formula (30), The worst disagreement in the
frame stresses occursg in the cylinder with the gmallesgt
ratio R/t (= 740). In this cylinder it was necessary to
multiply the buckling stress from formula (30) by 0.6 to
reach agreement bet®een the calculated and the observed
frame stresses. In the cylinder with a value of R/t of
rabout 1,000, a factor of 0,75 had to be used, In the tests
reported in reference 6 where R/T was between 2,000 and
3,000, no correction factor was needed for applying formu-
la (30). The effect of previous loading is apparently im-
portant if R/t is low, '

Comcluding Remarks on Diagonal—Tenéion Theory

The proposed new diagonal-tension theory will probadbly
be generally conservative for the design of intermediate
frames 1f the conservative values of the angle @ from

figure 10 and conservative values of T, &re used, Lesgs

conservative values for o and To may give better
agreement with the facts in some cases, but it is inmpossible
to predict such cases with the present knowledge, Unlike
the theory of the plate girder presented in the first part
of this paper, the theory of diagonal-tension action may

be expected to undergo continual changes and refinements

for some time, The stress analyst sghould constantly en-
deavor to keep abreast of such developements,

Langley Memorial Aeronautical Laboratory,
National Advisory Committee for aeronautics,
Langley Field, Va., January 10, 1939,
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APPENDIZX

Example 1

Find the loads acting on the intermediate ring A-4A
of the fuselage shown in figure 11, Assume the rings %o
be riveted to the skin,

Compute first the propertie’s of thé cross section,
agsuming the sheet to be fully effective in taking bending
stresses, . . _ . .

It

Total stringer area 16 X 0,120 1.92 gq. in,

Total skin area Dt = 2.01 sé. in.
Total area 3,93 sqg. in,
Effective thickness t, = 8.93 _ 0.03125 in,
D
I =mR%, = 785 in, %
Q = 2R®%t, sinB (See fig. 12,)
.L . . .
Q 2 sin €

The bending moment at ring A-A isg

M = 1,000 X 144 = 144,000 in,-1b,

>

The maximum fiber stres# is;thérefore

o = KR — 144000 X 20 = 3,870 ]_'b./sq. in,

I cos & 785

(The angdle & Tbotween the stringer and the axis is so
smell that cos & =1.).

Estimating the buckling stress of the sheet ag 20 percent
higher than the theoretical compressive buckling stress,

Oopit = 1.2 X 0,363 E % = 3,500 1b,/sq. in,

and the maximum gtress is close enough to the critical
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stress to Jjustify the agssumption that the sheet 1g fully
effective.

The shgar stress in the panels next to the neutral

™ N
axi = =) ig
8 (e z)

PQ 1000 x 2
T = = = 995 1b,/sq. in.
2t 2 X 0,018 X m x 20

The critical shear stregs is, by formula (30),

‘ 7.85.\%2
6.1 x 107 x 2:818 L 5 x 107 x(’9;95§>8 b+ 0.8 (
20 \7.85 L

12 ~

4
il

800 + 279 = 1,079 1b./sq. in,

which is above the shear stress actually existing, so that
there will be no diagonal~tension effects,

The shear forces applied by the skin to the ring,

which are the differences between the skin shear forces
in the adjacent paznels, are next found by formula (12)

PQ Bpy - Bop

ATt =
21 hg
_ 1000 sin B8 26.3 - 20.8
TR 40
ATt = 2,19 s8in 6
waere the values of by, hpy, and hpy were obtained

from figure 13, which 1s drawn to .an exaggerated vertical
gscals,

The shear force -trausmitted in each panel to the ring
ig obtained by multiplying the shear intensity 1t Dy the
developed width of the panel - . . -



N.A.C.A, Technical Note No, 687 21

;g = 7,85 in,
so tﬁat
Sa = 2,19 X 7.85 X sin 11,25° = 3,35 1v.
Sp = 17.2 x sin 33,75° = 9,57 1b,
Se¢ = 17,2 X sin 56.25% = 14,31 1b,
8g = 17.2 x sin 78,75° = 17,00 1b,

Next, the vertical forces exerted by the longitudi-
nals on the ring are computed by formula (13), Table I
gives all the data and is gelf explanatory.

In & similar manner, the horizontal forces acting on
the ring are obtained by using formmla (14), The factors
(tan 8gg ~ tan 8g1) can be obtained from the factors

(tan 5V2 ~ tan 5Vl) by inspection in the case of a circu-

lar ring, Table II gives the details of calculating the
horizontal forces. Figure 14 shows the two systems of
forces graphically.
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687

Calculation of Vertical Loads on Ring

22

Stringer| ¥ M—f -Ii{IZA tan sz tan 8Vl (tan 5V2 - ta.anv]_) AV
(in))
(1b./sq.in.)|(1b.) (1v.)
(a) (b) (c)
1 20.0 3,670 903 |0.0667 {0.0UTE 0.0191 17.25
2 18.48 3,390 835 | 0616 | .OWuO L0176 14,70
3 14,14 2,590 637 | «OUTL | 0337 L0134 8.53
4 T.65  1,hoh 345 | 0255 | .0182 .0073 2.52
5 0 0 010 0 0 0
8 =~ area of stringer + area of effective skin
= 0.120 + 0.126 = 0.246
b — vy — y
tan Syo= — Y Ctan 8;q = —2——
V2T 5 x 12 ARV T 35X 1
TABLE II
Calculation of Horizontal Loads on Ring
E.iy
Stringer ~ A (1b.) (tan 8y - tan Sgy) ATy (1D)
I
1 903 0 0
2 836 .0073 6,08
3 637 .0134 8.54
4 345 .0176 6.08
5 0 .0l91 0
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Example 2

23

Figure 15(a) shows the cross section of a wing bean

at the first bulkhead from the root,.

ing d 1ies 50 1In.,; the bending moment M
ig 1,500,000 in.-1b,

The bulkhead spac-

at the bulkhsad

Find the forces on the dbulkhead
caused by beam curvature.

The flange forces arse

_ 1500000

F = =
10

~2 §:4

= 150,000 1%b,

The compressive stress is

s . F_ _ 150000

= 2 = ~— = 35,700 1b./sq. in.
° a4, 4.2 /2

The forces V eacting on the compression side are, by

formula (19),

for each flange

. 0.6 '
Vv = 35,700% X x -2
107 4,32

and for each stringer

2 _ 0,5 50
Vv = 35,700° x == x
1 4,32

= 738 1lb,.

= 885 1b,

This load is uniformly distributed along each stringer,
The resulting maximum bending moment on each sgtringer is

va 738 X 50 '
M= iz~ 13 = S,OBOlin.flb.

occurring at the bulkhead.
The tensile stress is

150000

2= = 46,900 1b./sq.’ in.
3,2 /

o = F
t = w—-—=
At
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The forces V acting on the. tonslon side are, by formula
(19), for each flange

¥V = 46,9002 x 228 x B0 - 1,160 1b.
10 5.68
and for each stringer
V = 46,900 x Qa8 x -B0- - 966 1b.
10 5.68

This load is uniformly distributed along each stringer.
It causes at the bulkhead a bending moment

va 966 X 50
= e = 222 O Y o 4 0 in.-1lb.
M 12 12 103 z

The total area of each stringer is 0.5 sq., in. Assuming
the depth of the stringer to be 1 in., the sectisn modulus
will probably be less than 0.2 in.?; the bending stress
wlll thersefore be more than

o = igég = 20,150 1%b./sq. in.

It is obvious that the bulkhead spacing of 50 in. should
be reduced. For actual design, it should be borne in
nmind that the vertical loads on the flanges are actually
digtributed aldng the shear wed over a distance d of
50 in.

Figure 15(b) shows the forces acting on the bulkhead.

Example 3

Figure 16 shows the dimensions of a small sport-plane
fuselage at the cockpit. The fin-and-rudder load stresses
the longerons to o = 30,000 1b./sq. in. Find the size of
open ring required at section C - C to prevent caving in
of the cockpit. Disregard stresses carried in the sgkin.

According to formula (19), the forces V arising

from bending curvature are

- 2 0.1 17 = b, -
V = SO_,QOO X 107 X 10 ~15.3 1b.
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The maximum bending moment in the ring will %be
M =15.3 x 37 + 15.3 x 7 = 673 in.-1b.

Since prevention of caving in of the cockwnit is an essen-
tial condition for safety, the allowable stress will be
kept fairly low, say 30,000 1b./sq. in. The required sec-
tion modulus will then be

7 = -M- = —== = (,0224 in.:"

If standard angles are used, a 1 X 1 X 3 angle will dbe
. . 32
just sufficioent.

Example 4

The fugelage of exanple 1 1s subjected to a transverse
load of P = 5,000 1lb. and a torque of T = 40,000 in.-1b.
acting simultaneously. Find the maximum effects caussd by
diagonal tension oA the ring. :

Obviously the maximum effects will occur where the
shear stress reaches its maximum, in the panels adjacent
to the neutral axig.

The load being higher than in Example 1, the sheet
willl no longer be fully effective in carryling normal
stresses, so that Q and I change. The ratio I/Q
does not change, however, if the same simplifying assump-
tions are made on the distribution of the material. TUnder
the assumption uged for Example 1,

I 7 R® te __ mR
Q 28 t, sin 6 2 sin ©

or, for the neubral axls,

1 R

3" = = 31,42

The nominal ghear stress in panel 4-5 is therefore

o= 59 5000 = 4,970 1b./sq. in.

2%1 2 X 0,016 x 31l.42
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The nominal shear stress due to the torgque is

T o= =i o 40000 = 995 1b./sq. in.

24% 2 X 12566.6 X 0.016

The total nominal shear stress 1s therefore
T = 4,970 + 995 = 5,965 1b./sq. in,

To find the angle of folds a, <calculate

JE . 7.85 / 10”7 16.07
T 20 5965

26,.4°

Wi

il

From figure 10, o
The critical shear stress is

T, = 1,079 1b./sq. in. (See Example 1.,

Thisg value is the critical stress that may be expect-
ed as average for a number of panele. For any given panel,
it may be lower, and the designer may wilsh to add some fac-
tor of safety beyond . .that already provided in the design
requirements. For the present example, the computed value

of T, will be used. The portion of the total shear

stress carried as dlagonal tension is, by formula (28),

~ n
= 5,965 <1 - 1079

Tor 5965

Egtimating n = 2,

Tpp = 5,965 x 0.819% = 4,000 1b./sq. in.

The compressive force on the ring is then, hy formula (22,
Vy = 4,000 x 0.016 X 12 X 0.496 = 381 ibv.

and the stress 1s

oo o 381
U~ 0.100

[ea]

= 3,810 1b./sq. in.




N.A.C.A. Techniceal Note No. 687 27

The ratio . L L . A .
o g
_U _ 3810 _ .64
T- 5965

éiving

L =3 =.0,64 = 2.36 .

which glves, in secdnd approximation,

= 5.965 x 0,8192°35

Tpp = = 3,725 ;b./sq. in.
giving

0y = 3,560 1b./sq. in., n = 2.40

Tpp = 5,965 x 0,819%°%° = 3,690 1b./sq. 1in.

which may be taken as the final valus. The compressive
force in the ring becomes

Vg = 3,690.x 0,016 X 12 X 0486 = 351 1b.
and the stress

oy = 39L 3,510 1b./sq. in.

0.100

In Example 1, the skin was assumed to be riveted to the
rings .Under this crndition, there will be no bending
moments in the ring due to diagonal tension except eccen-~
tricity moments. For the sake of illustration, however,
the Pending moments that would exist if the skin did not
touch the rings will be computed. According to formula
(23), these moments would be

- . | - .
M= Vg Igﬁ = 351 x EELEQEB = 90.1 in.-1b.

which is somewhat-conservétive-because’ h and R were
measured on the skin contour, lacking detail data.

Assuming the riné to be 1 in. deep, the éection modu~
lus 2 would be less than O, 05 since A = 0.100. - There-

fore the bénding stress
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s > 90.1

B 0,05 ©°F op > 1,802 1b./sqe in.

Before the eccentricity moments act{ing at longitudinal 4
can be calculated,

the diagonal~tonsion load in panel 3-4
must be calculated.

The reatio
I R = ——31l:42 _ - 373,82
Q 2 gin 56,25° 1 x 0.831

Thereforc the shear stress due to the transverse load

T = 5000 = 4,130 1b./sq. in,
2 x 0.018 x 37.82

and the total ghear stress

T = 4,130 + 995 = 5,125 1b./sq. in.
Then

s
2t |

= 17.33 a = 25.7°
V4

The part of the shear stress carried by diagonal tension 1is

1079 2.40
Tpp = 5,125 <1 - =2L2

5125 ’ / -

n was taken from the last step'of the calculation
"for panel 4-5 as a first approximation. This computation
gives

Vg = 2,910 x 0.016 x 12 x 0,481 = 269 1b.
in.,

Assuming the eccentricity between skin and ring to be 0,5
the sccentricity moment acting on longitudinal 4 will
be, by formula (25),

M = 0.5 (351 -« 269) = 41 in.-~lb,

In order to evaluate completely the ring stresses at
longitudinal 5,

it would be necessary to calculate also
the eccentricity moments at longitudinals 2 and 3 and to

add their effect at longitudinal 5 by using formula (26a).
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Figure 1.- Plate girder with parallel flange@!
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Figure 2.- Free-body sketch of plate girder with curved flanges.
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(b)

Figure 3.~ Free-body sketch of plate girder with kinked flanges.
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Figure 5,- Forces on fuselage ring.
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Figure 6.- Curved beam.
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Figure 8.~ Ring under raiial loed.
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Figure 12,
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